Hydrodynamic diffusion of a suspension of elastic capsules in bounded simple shear flow

نویسندگان

  • Marcus Hwai-Yik Tan
  • Duc-Vinh Le
  • K.-H. Chiam
چکیده

A suspension of red blood cells in a flow undergoes hydrodynamic or shear-induced diffusion. It is known from experiments that deoxygenated or stiffer red blood cells have a lower hydrodynamic diffusion coefficient compared to oxygenated or softer red blood cells. In this paper, we numerically calculate the hydrodynamic diffusion coefficients of a suspension of elastic capsules of viscosity ratio unity and as a function of volume fraction, elastic capillary number and channel height in a bounded simple shear flow. We show that the time required for the suspension to reach the diffusive regime in the direction perpendicular to the shear plane decreases with channel height. In a narrow channel, the effect of capsule elasticity is to delay the approach to a diffusive regime. However, the motion in the direction parallel to the velocity gradient is always subdiffusive. We show that the hydrodynamic diffusion coefficient in the direction perpendicular to the shear plane varies linearly with capsule volume fraction up to about 25%. In addition, it does not increase monotonously with elastic capillary number but drops when the capsules become sufficiently soft. Finally, it displays a weak dependence on the channel height.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamic interaction between two nonspherical capsules in shear flow.

The hydrodynamic interaction between two nonspherical capsules suspended in a simple shear flow is studied numerically using a front-tracking method. The capsules are enclosed by thin shells which develop in-plane tensions and bending moments due to a preferred three-dimensional unstressed configuration. Computations are performed for capsules with spherical, oblate spheroidal, and biconcave un...

متن کامل

Buckling of a pre-compressed or pre-stretched membrane in shear flow

Membranes enclosing capsules and biological cells undergo periodic compression and stretching due to an imparted hydrodynamic traction as they rotate in a shear flow. Compression may cause transient or permanent buckling manifested by the onset of wrinkled shapes. To study the effect of pre-compression and pre-stretching on the critical conditions for buckling, the response of an elastic circul...

متن کامل

The Dilute Rheology of Swimming Suspensions: A Simple Kinetic Model

A simple kinetic model is presented for the shear rheology of a dilute suspension of particles swimming at low Reynolds number. If interparticle hydrodynamic interactions are neglected, the configuration of the suspension is characterized by the particle orientation distribution, which satisfies a Fokker-Planck equation including the effects of the external shear flow, rotary diffusion, and par...

متن کامل

Stokesian Dynamics simulation of Brownian suspensions

The non-equilibrium behaviour of concentrated colloidal dispersions is studied by Stokesian Dynamics, a general molecular-dynamics-like technique for simulating particles suspended in a viscous fluid. The simulations are of a suspension of monodisperse Brownian hard spheres in simple shear flow as a function of the Peclet number, Pe, which measures the relative importance of shear and Brownian ...

متن کامل

Shear modulation of intercellular contact area between two deformable cells colliding under flow.

Shear rate has been shown to critically affect the kinetics and receptor specificity of cell-cell interactions. In this study, the collision process between two modeled cells interacting in a linear shear flow is numerically investigated. The two identical biological or artificial cells are modeled as deformable capsules composed of an elastic membrane. The cell deformation and trajectories are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012